Harmonic map heat flow with rough boundary data

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Map Heat Flow with Rough Boundary Data

Abstract. Let B1 be the unit open disk in R2 and M be a closed Riemannian manifold. In this note, we first prove the uniqueness for weak solutions of the harmonic map heat flow in H1([0, T ]×B1,M) whose energy is non-increasing in time, given initial data u0 ∈ H(B1,M) and boundary data γ = u0|∂B1 . Previously, this uniqueness result was obtained by Rivière (when M is the round sphere and the en...

متن کامل

Self - shrinkers of Mean Curvature Flow and Harmonic Map Heat Flow with Rough Boundary Data

In this thesis, first, joint with Longzhi Lin, we establish estimates for the harmonic map heat flow from the unit circle into a closed manifold, and use it to construct sweepouts with the following good property: each curve in the tightened sweepout, whose energy is close to the maximal energy of curves in the sweepout, is itself close to a closed geodesic. Second, we prove the uniqueness for ...

متن کامل

Rigidity in the Harmonic Map Heat Flow

We establish various uniformity properties of the harmonic map heat ow, including uniform convergence in L 2 exponentially as t ! 1, and uniqueness of the positions of bubbles at innnite time. Our hypotheses are that the ow is between 2-spheres, and that the limit map and any bubbles share the same orientation.

متن کامل

Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data

We investigate the well-posedness of (i) the heat flow of harmonic maps from R to a compact Riemannian manifold N without boundary for initial data in BMO; and (ii) the hydrodynamic flow (u, d) of nematic liquid crystals on R for initial data in BMO−1 × BMO.

متن کامل

Formal Asymptotics of Bubbling in the Harmonic Map Heat Flow

The harmonic map heat flow is a model for nematic liquid crystals and also has origins in geometry. We present an analysis of the asymptotic behaviour of singularities arising in this flow for a special class of solutions which generalises a known (radially symmetric) reduction. Specifically, the rate at which blowup occurs is investigated in settings with certain symmetries using the method of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2012

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2012-05473-0